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Biaxial Testing of Aluminum-Lithium Alloy 2195 Using Cruciform Specimens

W.M. Johnston, W.D. Pollock. and D.S Dawicke

Analytical Services & Materials, Inc.

Hampton, Virginia

ABSTRACT

A cruciJorm biaxial test specimen was used to test the effect ofbiaxial

loading on the yield behavior of aluminum-lithium alloy 2195. Fifteen

cruciJorm specimens were tested Ji_om two thicknesses of 2195-T8 plate,

0.45 in. and 1.75 in. These results" were compared to the results" Jbom

uniaxial tensile tests" of the same alloy, and cruciJorm biaxial tests" of

aluminum alloy 2219-'187.
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INTRODUCTION

Aircraft and spacecraft structures are often subjected to multi-axial stresses. These structures are

designed and sized using various yield criteria. These yield criteria relate the multi-axial stress state to

yielding based on assumptions about the material behavior. The Space Shuttle External Tank was

initially designed using the maximum shear stress yield criterion. This criterion has been shown to be

accurate for ductile, isotropic materials and requires only a uniaxial tensile test to characterize the

material yielding behavior. For non-isotropic materials, the maximum shear stress yield criterion can

result in either over-designed or under-designed structures, depending on the material behavior and the

stresses in the structure. Testing that simulates the multi-axial stress state is often preferred to validate the

load carrying capability of the material.

The Space Shuttle External Tank is fabricated from aluminum alloy 2219, a ductile, isotropic material

whose behavior agrees well with the von Mises yield theory [1]. Figure 1 shows the maximum shear

stress and von Mises yield theories. At stress ratios of 1:0, 1:1 and 0:1, both theories are equal.

Elsewhere however, the maximum shear stress theory predicts lower yield strength. During the Super

Lightweight Tank Program, the Space Shuttle External Tank was redesigned using aluminum-lithium (A1-

Li) alloy 2195-T8. This alloy is not isotropic, and has significantly weaker tensile strength for

orientations other than the rolling direction. Due to this non-isotropic strength behavior, uncertainty

existed regarding safe use of biaxial yield criterions which use a single yield strength value. Therefore,

testing was performed to confirm both that the design criteria used would not allow yielding, and that the

design was not overly conservative.

Additionally, the proof testing of the External Tank is performed at room temperature, but the tank's

operating temperature is cryogenic. For A1 2219, this is conservative because the fracture toughness and

yield strength increase with decreasing temperature. However, the combined effects of biaxial loading

and decreased test temperature on 2195 were unknown.

The objectives of this research were:(1) to determine the yield behavior of A1-Li 2195-T8 for two



materialthicknessesundervariousbiaxialloadingconditionsandcomparetheresultstoA12219;and(2)
to determineyieldbehaviorof A1-Li2195at-320°F,usingabiaxialdisplacementratiowhichsimulates
theprooftestof theExternalTank,for comparisonwith theroomtemperatureresponseof thetwo
materials.

SPECIMEN DESIGN AND TESTING PROCEDURE

Room temperature uniaxial tensile tests were conducted on subsize dogbone specimens in accordance

with ASTM B557 [2]. Strains were measured with extensometers (1-in. gage length) positioned on both

sides of the specimen. Transverse strain gages were also applied to selected specimens to determine
Poison's ratio.

The biaxial specimen design and testing procedures were identical to the 2219 tests conducted by

Dawicke and Pollock [1]. All cruciform specimens had a 0.08-in.-thick gage section and were

instrumented with 52 strain gages, as shown in Figure 2. All of the gages were back-to-back with the odd

numbered gages on the front of the specimen and the even numbered gages on the back. An 80 channel

data acquisition system with a collection rate of 30 data points per second was used to collect the data at 5

second intervals. The tests were performed on a four-actuator servo-hydraulic test stand in stroke control

with a constant ratio between longitudinal (L) and transverse (T) displacement. Tests were conducted at a

constant displacement rate of 0.005 in./second on the major loading axis until a strain level of 12,000

microstrain was obtained in the gage section. Next, the specimens were unloaded (in stroke control at

0.005 inch/second) by 20-40 kips to allow the determination of unloading compliance. The specimens

were then loaded at a displacement rate of 0.003 in./second until failure. Other than a single test at

-320°F, all biaxial tests were performed at room temperature (75 °F).

MATERIAL

A1-Li alloy 2195 is being used in launch vehicle applications due to it's high strength, low density and

good cryogenic fracture toughness. Two plate gages of the 2195 alloy, supplied by McCook Metals,

were examined in this investigation: 0.45-in.-thick plate with a composition of 3.97Cu, 0.92Li, 0.33Mg,

0.32Ag, 0.14Zr, balance A1; and 1.75-in.-thick plate with a composition of 4.04Cu, 0.94Li, 0.35Mg,

0.33Ag, 0.15Zr, balance A1. The 0.45-in.-thick plate came from material LOT 940M013A and was

solution heat treated at 940-960°F for at least 120 minutes, water quenched, then stretched 3.5% and aged

for 40 hours at 290°F. The 1.75-in.-thick plate came from material LOT 940M015A and was solution

heat treated at 940-960°F for at least 150 minutes, water quenched, then stretched 3.5% and aged for 36
hours at 300°F.

NUMERICAL ANALYSIS

The cruciform biaxial test produces measurements of strain as a function of applied load. The

determination of a biaxial yield stress locus requires strain as a function of stress. For a cruciform

specimen, numerical analysis is required to determine the relationship between applied load and local

stress. A numerical analysis that included a 2-D treatment of anisotropic behavior was not available.

Therefore, the biaxial yield behavior of 2195 was compared to 2219 using the 0.2% offset yield load
instead of stress.



RESULTS

Uniaxial Results

The tensile strength, 0.2% yield strength and elongation to failure for the 0.45-in.-thick 2195-T8

aluminum plate are listed in Table 1. Tensile tests conducted in the rolling or longitudinal (L) direction,

long-transverse (T) direction, and at several intermediate angles illustrate the variation in uniaxial

properties with respect to the orientation of the loading axis relative to the rolling direction. The tensile

and the yield strengths follow similar trends (as shown in Figure 3), with a maximum in the L orientation

and a minimum at 55 °. An 18% difference exists between the maximum (83.3 ksi in the L orientation)

and the minimum (62.5 ksi at 55 °) observed yield strength. The maximum elongation to failure (also

shown in Figure 3) occurs at 60 ° (14.9%) and the minimum occurs in the L orientation (8.5%). These

differences in properties with loading axis orientation illustrate the extent of anisotropic behavior in the

2195-T8 alloy.

Biaxial Results

Biaxial tests were performed on 2195-T8 cruciform panels machined from the t/2 (mid-plane) location

of a 0.45-in.-thick plate and from the t/6 location of a 1.75-in.-thick plate. Seven biaxial displacement

ratios were tested at room temperature and yield results are summarized in Tables 2 and 3 for the 0.45-in.

and 1.75-in.-thick plates, respectively. An additional test was conducted for the 0.45-in.-thick plate

material immersed in liquid nitrogen (-320°F). The results from the baseline 0.25-in.-thick 2219-T87

plate biaxial tests are presented in Table 4 for comparison [1]. A typical load-strain history from a 1:1

(L:T) applied displacement ratio test on 0.45-in.-thick plate is shown in Figure 4 which includes output

from opposing strain gages and extensometers near the center of the specimen. See Figure 2 for strain

gage and extensometer positions. A 2000 microstrain (0.2%) offset was used to obtain the 0.2% yield

load. The strain gages remained intact well beyond the strain level needed to obtain the yield load.

The 0.2% yield load for the two thicknesses of the 2195-T8 material and the baseline 2219-T87

material is shown in Figure 5, plotted in terms of the applied load in the longitudinal and long-transverse

directions. The 2219-T87 material was only tested in one quadrant because of the isotropic behavior of

the material. This figure indicates that the maximum shear stress approach provided conservative results
for all tests conducted when a net section stress was considered. Both thicknesses of 2195-T8 exceeded

the yield load of the 2219-T87 material by about 30%. The effective increase is enhanced considering the

density of 2195 is 0.095 lbs/in 3 as compared to 0.103 lbs/in 3 for 2219.

The cryogenic (-320°F) test for the 0.45-in.-thick 2195-T8 material was performed at a displacement

ratio of 1:2 (L:T), closely simulating the proof test load ratio. At -320°F the yield load was

approximately 20% greater than the yield load obtained at room temperature, as shown in Figure 6.

SUMMARY AND CONCLUDING REMARKS

Tensile tests were performed to demonstrate the anisotropy of A1-Li alloy 2195-T8. Cruciform biaxial

tests were used to determine the effect of biaxial loading on yield strength for specimens machined from

two thicknesses of 2195-T8, 0.45 in. and 1.75 in. Tests were conducted at seven biaxial load ratios for

each plate thickness. The 0.2% yield load was determined from these tests and compared to the baseline

aluminum alloy 2219.

The results of this study indicate that the uniaxial tensile strength of 2195-T8 is anisotropic. The



rollingdirectionhasthehighesttensilestrength,andan18%reductionin strengthwasfoundat 55°.
Althoughthisdegradationin propertieswasexpectedfor theuniaxialtests,thebiaxialyieldresults
indicatethatthemaximumshearstressapproachprovidedconservativeresultsfor all testsconducted
whenanetsectionstresswasconsidered.

Theyield loadloci for 0.45-in.and1.75-in.-thick2195-T8platesshowa significantincreasein
strengthwhencomparedto the2219resultsforthesamedisplacementratio. Bothplatethicknessesof
2195-T8showedsimilarresults.Theyield loadat -320°Fwas20%higherthanthevalueat room
temperatureforthe0.45-in.-thick2195-T8plateata1:2biaxialdisplacementratio.

Reference:

[1] "Biaxial Testing of 2219 Aluminum Alloy Using Cruciform Specimens", NASA CR-4782, D.S. Dawicke &

Wm.D. Pollock, Aug 1997.

[2] ASTM B557-94, 1998 Annual Book of ASTM Standards, vol. 2.02, Aluminum an Magnesium Alloys.



Table 1. Uniaxial Tensile Test Summary 2195-T8, from t/2 of 0.45-in. Plate

Orientation Tensile Strength 0.2% Offset Yield Elongation to Failure (%)

(ksi) Strength (ksi)

L- 1 88.6 84.0 7.0

L - 2 88.2 82.6 9.9

Avg - Longitudinal 88.4 83.3 8.5

45 ° - 1 76.3 71.0 12.7

45 ° - 2 76.2 71.0 *

Avg - 45 ° from Rolling 76.3 71.0 12.7

Direction

55 ° - 1 73.8 67.8 14.7

55 ° - 2 74.1 68.5 14.6

74.0 68.2 14.7Avg - 55 ° from Rolling
Direction

60 ° - 1 76.7 68.6 *

60 ° - 2 76.3 68.1 14.9

Avg - 60 ° from Rolling 76.5 68.4 14.9

Direction

65 ° - 1 82.9 72.5 14.5

65 ° - 2 80.5 70.2

Avg - 65 ° from Rolling 81.7 71.4 14.5

Direction

70 ° - 1 82.5 73.5 8.3

70 o _ 3 82.1 72.3 10.1

Avg - 70 ° from Rolling 82.3 72.9 9.2

Direction

LT - 1 85.8 80.2 13.1

LT - 2 84.9 79.6 9.2

Avg - Long Transverse 85.4 79.9 11.2

* Failed outside extensometer gauge length

Table 2. Biaxial Test Summary 2195-T8, from t/2 location of 0.45-in Plate

Applied Displacement Ratio Longitudinal Load at 0.2% Offset Long Transverse Load at 0.2%

(L:LT) Plastic Strain (kips) Offset Plastic Strain (kips)

0:1 0.00 64.6

1:5 27.6 71.9

1:2 47.0 72.5

1:1 70.1 72.4

2:1 73.3 43.2

5:1 74.1 28.2

1:0 66.1 0.00

1:2 @ -320°F 60.1 86.5



Table3.BiaxialTestSummary2195-T8,fromt/6locationof1.75-in.Plate

AppliedDisplacementRatio LongitudinalLoadat0.2% LongTransverseLoadat0.2%
(L:LT) PlasticStrain(kips) PlasticStrain(kips)
0:1 0.00 64.0
1:5 26.4 70.4
1:5 29.5 69.7
1:2 45.6 69.0
1:1 71.5 68.2
5:1 68.1 22.0
1:0 66.6 0.00

Table4.BiaxialTestSummary2219-T87,fromt/2locationof0.25-in.Plate[1]

AppliedDisplacementRatio LongitudinalLoadat0.2% LongTransverseLoadat0.2%
PlasticStrain(kips) PlasticStrain(kips)

1:0 48.3 0
20:1 55.5 10.9
5:1 55.8 18.3
2.5:1 52.9 28.8
2.5:1 55.7 37.2
1:1 50.7 50.7
1.18:1 54.2 52.8
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APPENDIX

Biaxial tests were performed at stroke ratios of 0:l, 1:5, 1:2, 1:1, 2:1, 5:1, and 1:0 at room temperature

and 1:2 at -320°F on 0.45" thick 2195-T8 plate. Biaxial tests were performed at stroke ratios of 0:1, 1:5,

1:2, 1:1, 5:1 and 1:0 at room temperature at t/6 of 1.75-in.-thick 2195 plate. The load-strain

measurements for each test are given in Figures A-1 through a-15, respectively. The 0.2% yield load is

shown in each figure relative the strains measured at the center of the gage section. The yield loads

correspond to the data points shown in Figures 5 and 6.
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Figure A-13 Load plotted against s_ain _r the ce_er gages ofa cruci_rm biaxial panel (stroke ratio 1:1).
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Figure A-14 Load plotted against strain for the center gages of a cruciform biaxial panel (stroke ratio 5:1).
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Figure A-J5 Load plotted against strain for the center gages of a cruciform biaxial panel (stroke ratio 1:0).
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